CANCELLATION OF QUADRATIC FORMS OVER PRINCIPAL IDEAL DOMAINS

Raman PARIMALA
School of Mathematics, Tata Institute of Fundamental Research, Bombay 400005, India

Communicated by H. Bass
Received 16 March 1981
Revised 13 April 1981

Introduction

Let R be a commutative ring of dimension one in which 2 is invertible. It was proved in [8, Theorem 7.2] that if q is a quadratic space (i.e. a non-singular quadratic form on a finitely generated projective module) over R of Witt-index at least two, cancellation holds for q. The aim of this note is to prove a refinement of this result if R is a principal ideal domain. More precisely, we prove that if R is a principal ideal domain and q an isotropic quadratic space over R, then cancellation holds for $q .^{1}$ (We note that a quadratic form q over a Dedekind domain is isotropic if and only if its Witt-index is at least one.) We give examples to show that, in general, cancellation fails for quadratic spaces of Witt-index one over arbitrary Dedekind domains and for anisotropic spaces over principal ideal domains, thereby showing that our result is in some sense the best possible.

I am thankful to M.A. Knus for the interesting discussions I had with him during the preparation of the paper.

1. Cancellation for isotropic forms

Theorem 1. Let R be a principal ideal domain in which 2 is invertible and let q be an isotropic quadratic space over R. If $q \perp q^{\prime} \rightrightarrows q^{\prime \prime} \perp q^{\prime}$ for quadratic spaces $q^{\prime}, q^{\prime \prime}$ over R, then $q \xlongequal{=} q^{\prime \prime}$.
Proof. Let K denote the field of fractions of R. By a classical theorem of Witt, $K \otimes_{R} q \leadsto K \otimes_{R} q^{\prime \prime}$ and hence there exists $\lambda \in R, \lambda \neq 0$ such that

$$
R[1 / \lambda] \otimes_{R} q \xrightarrow{\sim} R[1 / \lambda] \otimes_{R} q^{\prime \prime}
$$

[^0]We show that this implies $q \leadsto q^{\prime \prime}$. By an obvious inductive argument, we may assume that $\lambda=p$ is a prime in R. We set $R[1 / p]=R_{p}$. Let \hat{R} denote the completion of R with respect to the prime ideal (p). Then \hat{R} is a complete discrete valuation ring, $\hat{R}_{p}=\hat{R}[1 / p]$ is the field of fractions of \hat{R} and we have a commutative diagram

where all the arrows are inclusions and $\hat{R} \cap R_{p}=R$. Since \hat{R} is local, there exists, in view of [8, Theorem 8.1] an isometry

$$
\psi: \hat{R} \otimes_{R} q \leadsto \hat{R} \otimes_{R} q^{\prime \prime} .
$$

By assumption, there exists an isometry

$$
\phi: R_{p} \otimes_{R} q \xrightarrow{\sim} R_{p} \otimes_{R} q^{\prime \prime}
$$

Let $\tilde{\psi}$ and $\tilde{\phi}$ denote the extensions of ψ and ϕ respectively to isometries over \hat{R}_{p}. The element $\tilde{\psi} \cdot \tilde{\phi}^{-1}$ belongs to the orthogonal group $O_{\hat{R}_{p}}(q)$. Since q is isotropic, $q \underset{\rightarrow}{ } q_{0} \perp h$ where h denotes the hyperbolic plane

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

It is proved in [5, proof of Proposition 3.1] that every element of the orthogonal group $O_{\hat{R}_{p}}\left(q_{0} \perp h\right)$ is a product $\sigma_{1} \cdot \sigma_{2}$, where $\sigma_{1} \in O_{\tilde{R}}\left(q_{0} \perp h\right), \sigma_{2} \in O_{R_{p}}\left(q_{0} \perp h\right)$, regarding $O_{\hat{R}}\left(q_{0} \perp h\right), O_{R_{p}}\left(q_{0} \perp h\right)$ as subgroups of $O_{\hat{R}_{p}}\left(q_{0} \perp h\right)$. Thus, $\tilde{\psi} \cdot \tilde{\phi}^{-1}=$ $\sigma_{1} \cdot \sigma_{2}, \sigma_{1} \in O_{\bar{R}}\left(q_{0} \perp h\right), \sigma_{2} \in O_{R_{p}}\left(q_{0} \perp h\right)$. The isometries

$$
\sigma_{1}^{-1} \cdot \psi: \hat{R} \otimes_{R} q \xrightarrow{\sim} \hat{R} \otimes_{R} q^{\prime \prime}
$$

and

$$
\sigma_{2} \cdot \phi: R_{p} \otimes_{R} q \leadsto R_{p} \otimes_{R} q^{\prime \prime}
$$

coincide over \hat{R}_{p} and hence define an isometry $q \rightrightarrows q^{\prime \prime}$ over R, thus completing the proof of the theorem.

Remark. Over arbitrary Dedekind domains, cancellation does not hold for isotropic quadratic spaces as is shown by the following example: Let R be a Dedekind domain such that Pic R contains a non-trivial element P which is a square. Since P is not free, $H(P) \nRightarrow H(R)$. On the other hand $H(P \oplus R) \Longrightarrow H\left(R^{2}\right)$. In fact, if $P=Q \otimes_{R} Q$, with $Q \in \operatorname{Pic} R$, we have $P \oplus R \rightrightarrows Q \oplus Q$ and

$$
H(Q \oplus Q)=\left(\left(Q_{1} \oplus Q_{2}\right) \oplus\left(Q_{1}^{*} \oplus Q_{2}^{*}\right), h\right)
$$

where $Q_{1}, Q_{2} \rightrightarrows Q$. We have $Q_{1} \oplus Q_{2}^{*} \rightrightarrows\left(Q_{1} \otimes Q_{2}^{*}\right) \oplus R \leftrightharpoons R^{2}$ is a totally isotropic direct summand of $H(Q \oplus Q)$ and hence $H(P \oplus R) \stackrel{\rightrightarrows}{\Rightarrow} H(Q \oplus Q) \leftrightharpoons H\left(R^{2}\right)$ (see proof of Proposition 4.5 of [6]).

2. Non-cancellation for anisotropic forms

In this section, we give an example to show that cancellation does not hold in general for anisotropic forms over principal ideal domains.

Let k be any field of characteristic $\neq 2$ which admits of a quaternion division algebra H. Let P be a non-free projective ideal of $H[X, Y]$ (see [7, Proposition 1]). The norm q on the Azumaya algebra End ${ }_{H[X, Y]} P$ is a rank 4 anisotropic quadratic space over $k[X, Y]$ which is not extended from k (see [2]). However, in view of a theorem of Karoubi, q is stably extended from the reduction \tilde{q} of q modulo (X, Y). Thus, q and $q \otimes_{k} k[X, Y]$ are stably isometric, but not isometric.

Let $k(t)$ denote the rational function field in one variable t over k and let $R=$ $k(t)[X, Y] /\left(X^{2}-Y^{3}-t\right)$. The ring R is a ring of fractions of

$$
S=k[t, X, Y] /\left(X^{2}-Y^{3}-t\right) \leadsto k[X, Y]
$$

and is hence a unique factorization domain [1, p. 437]. Since $\operatorname{dim} R=1, R$ is in fact a principal ideal domain.

Proposition 2. Let q be the quadratic space over $k[X, Y]$ defined as above. Then $R \otimes q$ and $R \otimes \bar{q}$ are stably isometric but not isometric.

Proof. Since q and \bar{q} are stably isometric over $k[X, Y], R \otimes q$ and $R \otimes \bar{q}$ are stably isometric. We shall show that they are not isometric. We recall that two Azumaya algebras of rank 4 are isomorphic if and only if their norms are isometric [3, Prop. 4.4]. Thus

$$
R \otimes q \longrightarrow R \otimes \bar{q} \Leftrightarrow \mathrm{End}_{\Lambda} R \otimes P \longrightarrow \Lambda
$$

where $\Lambda=H \otimes_{k} R$, since $R \otimes q$ (resp. $R \otimes \bar{q}$) is the norm in End $A \otimes P$ (resp. Λ). Since $\operatorname{Pic} R$ is trivial, this is true if and only if $R \otimes P \leftrightharpoons \Lambda$ as Λ-modules. Suppose that $R \otimes P$ is free. Since R is a ring of fractions of S, there exists $g \in k[t]$ such that $S[1 / g] \otimes P$ is free. Let $g=h t^{n}$, with $(h, t)=1$. Let

$$
\alpha: S[1 / h t] \otimes P \xrightarrow{\sim} S[1 / h t] \otimes H
$$

be an isomorphism of $S[1 / h t] \otimes H$-modules. Then

$$
\text { End } \alpha: \operatorname{End}_{S[1 / h t] \otimes H} S[1 / h t] \otimes P \sim S[1 / h t] \otimes H
$$

is an isomorphism of $S[1 / h t]$-algebras and since the reduced norm in $S[1 / h] \otimes H$ is anisotropic modulo t, it follows in view of [4, Prop. 1.1] that End α is defined over $S[1 / h]$, i.e.

$$
\operatorname{End}_{S(1 / h] \otimes H}(S[1 / h] \otimes P) \sim S[1 / h] \otimes H
$$

Since Pic $S[1 / h]$ is trivial, $S[1 / h] \otimes P$ is free over $S[1 / h] \otimes H$. Since $(h, t)=1$, going modulo t, we get $k[X, Y] /\left(X^{2}-Y^{3}\right) \otimes_{k[X, Y} P$ is free over $H[X, Y] /\left(X^{2}-Y^{3}\right)$. This is a contradiction to the fact that P is non-free over $H[X, Y] /\left(X^{2}-Y^{3}\right)[6$, Prop. 4.7]. This proves the proposition.

Remark. It was proved in [6, Prop. 4.7] that the non-free projective ideal P of $\mathbb{H}[X, Y]$ constructed in [7, Prop. 1] (here H denotes the division ring of real quaternions) remains non-free when reduced modulo $X^{2}-Y^{3}$. Let now k be any field of characteristic $\neq 2$ which admits of a quaternion division algebra H. One could ask whether any non-free projective ideal of $H[X, Y]$ becomes free when reduced modulo a prime ideal \mathfrak{Y} of $K[X, Y]$ of height 1 with $K[X, Y] / \mathfrak{Y}$ being regular. The above example shows that this is not in general true.

References

[1] W.M. Cunnea, Unique factorization in algebraic function fields, Illinois, Math. 8 (1964) 425-438.
[2] M.A. Knus and M. Ojanguren, Modules and quadratic forms over polynomial algebras. Proc. Amer. Math. Soc. 66 (1977) 223-226.
[3] M.A. Knus, M. Ojanguren and R. Sridharan, Quadratic forms and Azumaya algebras, J. Reine. Angew. Math. 303/304 (1978) 231-248.
[4] M.A. Knus, R. Parimala and R. Sridharan, Non-free projective modules over $\mathbb{H}[X, Y]$ and stable bundles over $\mathbb{P}_{2}(\mathbb{C})$, to appear.
[5] R. Parimala, Quadratic forms over polynomial rings over Dedekind domains, Amer. Jour. Math. 103 (2) (1981) 13-27.
[6] R. Parimala and R. Sridharan, Quadratic forms over rings of dimension 1, Comm. Math. Helv. 55 (1980) 634-644.
[7] M. Ojanguren and R. Sridharan, Cancellation of Azumaya algebras, J. Algebra 18 (1971) 501-505.
[8] A. Roy, Cancellation of quadratic forms over commutative rings, J. Algebra 10 (1968) 286-298.
[9] R.C. Wagner, Some Witt cancellation theorems, Amer. Jour. Math. 94 (1972) 206-220.

[^0]: ${ }^{1}$ It has been brought to my notice that Theorem 1 is contained in [9, Th. 3.1]. However, our method of proof, which is based on ideas developed in [5], and also our examples seem to be of independent interest.

