
Journal of Pure and Applied Algebra 24 (1982) 213-216 

North-Holland Publishing Company 

213 

CANCELLATION OF QUADRATIC FORMS OVER 
PRINCIPAL IDEAL DOMAINS 

Raman PARIMALA 

School of Mathematics. Tata Institute of Fundamental Research, Bombay 400005, India 

Communicated by H. Bass 

Received 16 March 1981 

Revised 13 April 1981 

Introduction 

Let R be a commutative ring of dimension one in which 2 is invertible. It was 
proved in [8, Theorem 7.21 that if 4 is a quadratic space (i.e. a non-singular 
quadratic form on a finitely generated projective module) over R of Witt-index at 
least two, cancellation holds for q. The aim of this note is to prove a refinement of 
this result if R is a principal ideal domain. More precisely, we prove that if R is a 
principal ideal domain and 4 an isotropic quadratic space over R, then cancellation 
holds for 4.’ (We note that a quadratic form q over a Dedekind domain is isotropic 
if and only if its Witt-index is at least one.) We give examples to show that, in 
general, cancellation fails for quadratic spaces of Witt-index one over arbitrary 
Dedekind domains and for anisotropic spaces over principal ideal domains, thereby 
showing that our result is in some sense the best possible. 

I am thankful to M.A. Knus for the interesting discussions I had with him during 
the preparation of the paper. 

1. Cancellation for isotropic forms 

Theorem 1. Let R be a principal ideal domain in which 2 is invertible and let q be an 
isotropic quadratic space over R. If q I q ’ =r q” I q' for quadratic spaces q‘, q” over 
R, then q s q”. 

Proof. Let K denote the field of fractions of R. By a classical theorem of Witt, 
K 0~ q SK&q” and hence there exists 1 E R, A f 0 such that 

R[l/A] &q --r R[l/A] &q”. 

’ It has been brought to my notice that Theorem 1 is contained in [9. Th. 3.11. However, our method of 

proof, which is based on ideas developed in [5], and also our examples seem to be of independent interest. 
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We show that this implies ~GcJ”. By an obvious inductive argument, we may 
assume that A =p is a prime in R. We set R[l/p] = Rp. Let R denote the completion 
of R with respect to the prime ideal (p). Then R is a complete discrete valuation 
ring, $=R[l/p] is the field of fractions of l? and we have a commutative diagram 

where all the arrows are inclusions and R fl R, = R. Since R is local, there exists, in 
view of [8, Theorem 8.11 an isometry 

@t&q a R-&q”. 

By assumption, there exists an isometry 

Let 1+7 and 6 denote the extensions of w and @ respectively to isometries over &,. The 
element @.z-’ belongs to the orthogonal group Ogp(q). Since q is isotropic, 
q s q. _L h where h denotes the hyperbolic plane 

0 1 ( > 10’ 

It is proved in [5, proof of Proposition 3.11 that every element of the orthogonal 
group op,(qe I h) iS a product oI . btr where oI E OR(qe I h), o2 E o&,(qe I h), re- 
garding OR(qo_L h), ORp(qo I h) as subgroups of Op,(qoI h). Thus, Q * 6-l = 

crI. b2, oI E O,q(& I h), 62~ oRp(qo 1 h). The iSOI’IWrieS 

and 

coincide over &, and hence define an isometry q s q” over R, thus completing the 
proof of the theorem. 

Remark. Over arbitrary Dedekind domains, cancellation does not hold for isotropic 
quadratic spaces as is shown by the following example: Let R be a Dedekind domain 
such that Pit R contains a non-trivial element P which is a square. Since P is not 
free, H(P) *H(R). On the other hand H(P@ R) =*H(R2). In fact, if P = Q @R Q, 
with QEPicR, we have P@RqQ@Qand 

H(QOQ)=((Q,OQ2)0(Q:OQf),h), 

where Q,,Q2qQ. We have QI@Q~=+(QI@Q:)@R~R2 is a totally isotropic 
direct summand of H(Q@ Q) and hence H(P@ R) qH(Q@ Q) qH(R2) (see proof 
of Proposition 4.5 of [6]). 
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2. Non-cancellation for anisotropic forms 

In this section, we give an example to show that cancellation does not hold in 
general for anisotropic forms over principal idea1 domains. 

Let k be any field of characteristic #2 which admits of a quaternion division 
algebra H. Let P be a non-free projective ideal of H[X, Y] (see [7, Proposition 11). 
The norm 4 on the Azumaya algebra EndHIx, ~1 P is a rank 4 anisotropic quadratic 
space over k[X, Y] which is not extended from k (see [2]). However, in view of a 
theorem of Karoubi, q is stably extended from the reduction 4’ of q modulo (X, Y). 
Thus, q and 4 @k[X, Y] are stably isometric, but not isometric. 

Let k(t) denote the rational function field in one variable t over k and let R = 
k(t)[X, Y]/(X2- Y3- t). The ring R is a ring of fractions of 

S=k[&X, Y]/(P- YJ--t) a k[X, Y] 

and is hence a unique factorization domain [I, p. 4371. Since dim R = 1, R is in fact 
a principal ideal domain. 

Proposition 2. Let q be the quadratic space over k[X, Y] defined as above. Then 
R Q q and R @ 4 are stably isometric bur not isometric. 

Proof. Since q and 4 are stably isometric over k[X, Y], R 0 q and R 0 4 are stably 
isometric. We shall show that they are not isometric. We recall that two Azumaya 
algebras of rank 4 are isomorphic if and only if their norms are isometric [3, Prop. 
4.41. Thus 

where /1= H ok R, since R @ q (resp. R @ 4) is the norm in End,, R @ P (resp. /1). 
Since Pit R is trivial, this is true if and only if R@ Ps.4 as /l-modules. Suppose 
that R @ P is free. Since R is a ring of fractions of S, there exists g E k[t] such that 
S[l/g] @ P is free. Let g = ht”, with (h, t) = 1. Let 

a : S[l/ht] @ P 5 S[l/ht] @H 

be an isomorphism of S[l/ht] @I-Z-modules. Then 

End a : EndsIl,,,rlOH S[l/ht]@P 2 S[l/ht]@H 

is an isomorphism of S[l/ht]-algebras and since the reduced norm in S[l/h] @His 
anisotropic modulo I, it follows in view of [4, Prop. 1.11 that End a is defined over 
S[l/h], i.e. 

Since Pit S[l/h] is trivial, S[ l/h] @ P is free over S[l/h] 0 H. Since (h, t) = 1, going 
modulo t, we get k[X, Y]/(X2- Y3) OkIx, ul P is free over H[X, Y]/(X2- Y3). This 
is a contradiction to the fact that P is non-free over H[X, Y]/(X*- Y3) [6, Prop. 
4.71. This proves the proposition. 
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Remark. It was proved in [6, Prop. 4.71 that the non-free projective ideal P of 
IH[X, Y] constructed in [7, Prop. I] (here IH denotes the division ring of real 
quaternions) remains non-free when reduced modulo X2- Y3. Let now k be any 
field of characteristic #2 which admits of a quaternion division algebra H. One 
could ask whether any non-free projective ideal of H[X, Y] becomes free when 
reduced modulo a prime ideal 9 of K[X, Y] of height 1 with K[X, Y]/g being 
regular. The above example shows that this is not in general true. 
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